

Buildings Behaving Badly: why are half of all buildings not performing as predicted?

Dr Richard Jack BTS Webinar Series #1

Build Test Solutions: Who We Are

- Trusted authority in building performance measurement Influencing industry standards and policy.
- Pioneering technologies
 Creators of market-first solutions incl.
 Pulse, Heat3D and SmartHTC.
- Accurate, actionable data
 Transforming how buildings are
 assessed, verified, and improved.

Our Users

• Making measurement mainstream

- Measurement as a service: surveyors, consultants, building owners and operators, installers
- Integrators: smart tech, IoT, energy providers

Today We'll Cover

- What a Heat Transfer
 Coefficient is
- How they're calculated and measured
- How & why calculation and predictions differ
- $_{\circ}$ $\,$ Why that matters $\,$

What is a Heat Transfer Coefficient?

- Sum of heat transfer paths
- Estimated for every EPC
- Estimated: U-value * area
- Or measured in-situ

-0

How good are the estimates?

HTC in RdSAP

- EPC outputs are linearly related to heat loss (HTC)
- Including ratings, bands, heat demand, energy use, costs, & CO₂
- Inaccuracy in HTC directly impacts outputs

SmartHTC

- Tool to measure HTCs
- Building used as normal
- In-use energy balance
- 21 days winter data
- Cloud hosted calculator
- Browser interface
- API integration

SmartHTC

- Available since 2021
- >11,000 measurements
- >100 users
- Two business models:
 - Measurement as a service
 - Integrated

User Type

SmartHTC Validation

- 43 comparisons with baseline measurement
- Buildings with varied thermal performance
- Very high accuracy, high precision:
 - Accuracy (NMBE): -1%

Precision (CVRMSE): 12%

Performance Gap Study

energ saving trust

- Measured vs RdSAP HTC
- Sample size 503
 - Biggest ever!
 - Biased to older buildings
- EST generated RdSAP HTCs
- Why not more?
 - HTC not stored in EPC Open Data
 - Not even all reqd inputs stored!

Property Type	Qty	Main Wall	Qty	SAP Band	Qty	Age	Qty
Flat	184	Cavity	313	А	12	Pre-1900	25
End-terrace	44	Solid brick/stone	152	В	6	1900-29	77
Mid-terrace	72	System Build	24	С	98	1930-49	92
Detached	22	Timber frame	13	D	280	1950-66	120
Semi-detached	180			E	97	1967-75	152
				F	9	1976-82	15
				G	1	1983-90	7
						1991-95	2
						1996-02	4
						2007-	8

Performance Gap

- 57%(!) of RdSAP HTCs wrong (out of measurement CI)
- More common (72%) to
 overestimate heat loss

- Average performance gap 30%
- Large errors common, 1 in 6 >50%

Performance Gap

Previous Performance Gap Studies

- Total sample 84
- Bias towards **new build**
- 70% of RdSAP HTCs wrong
- More common (85%) to underestimate heat loss
- Average performance gap 31%
- Similar average gap and trend to the BTS/EST study

Studies:

- Leeds Beckett University, <u>Quantifying the domestic building</u> <u>fabric 'performance gap'</u>
- Building Performance Network, <u>State of the Nation</u> DESNZ, <u>SMETER project</u>

Why Are These Calculations Wrong?

- Building performance is incredibly variable
- Visually similar buildings have vastly different performance
- The 'prediction interval' describes how accurately a value can be estimated given previous data
- Here it's ±62% of the mean!

Uncertain Inputs

- Here we look at previous
 U-value field trials
- RdSAP can be right on average
 But not for all buildings
- But not for all buildings
- Prediction intervals range from ±20% to ±163%
- Repeated for all input assumptions

Studies by <u>BRE x2</u>, <u>Historic</u> <u>Scotland</u>, & <u>BPN</u>

Mean Uncertain Outputs

- Like EPC ratings, bands, heat demand, energy demand, cost, & CO₂
- E.g. Wall U-value uncertainty results in 5 to 9 point swing
- Policy design and regulation undermined by this uncertainty

Conclusions

пп

(Energy models like) RdSAP:

- Accuracy OK (NMBE): 8%
- Precision poor (CVRMSE): 38%
- Useful for groups of dwellings
- Poor for individual dwellings
- Risks misdirecting retrofit spending (£60bn in EST study)
 Poor for QA
- Poor for heating/cooling sizing

×

Data Linear (Data)

Combined Sample (Previous + This Project)

Next Seminar

From Complaints to Confidence:

Proactively Managing Moisture with Measured Data

<u>Wednesday, 27th August,</u> <u>Midday</u>

Sign Up Here

